Hello Jim,
Well, you need to have a soundcard with at least 4 synchronous inputs.
One channel is used for a 1 PPS reference, used for drift compensation.
The remaining 3 channels are for 3 antennas, one is E field and two are
orthogonal loop antennas. They need to work on that frequency of course
and you need a reasonable quiet location when working at ULF.
The rest is done by software.
With Paul Nicholsons software vlfrx-tools, you can mix these antennas in
a post-processing of the recorded raw data from the soundcard. When
writing 3 channels at 48 kS/s and 16 bit/Sample to a HDD, you will get
about 24 GB per day. So you can keep the last 40 days available if you
write to a 1 TB HDD...
With the tool vtmix -c0.35,0.1,1/50,0 you are mixing 4 channels into one
channel. CH1= E/W loop, CH2= N/S loop, CH3= E-field, CH4= 2nd E-field
antenna. Here the resulting signal stream is 0.35 E/W + 0.1 N/S + 1 E
(rotated by 50 deg). Quite simple once you understood how it works. The
resulting cardioide antenna can be optimised for a best S/N of the
signal,
In the beginning it all looks very complex when starting with command
line tools, but after some usage it becomes normality :-)
73, Stefan
Am 17.05.2021 00:39 schrieb James via groups.io:
Свернуть
Please describe the 3-axis antenna or remind us of a link to it if
already described.
TU & Vy 73,
Jim H W5EST